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Abstract

Free, out of plane vibration of a rotating beam with nonlinear spring–mass system has been investigated. The nonlinear

constraint is connected to the beam between two points on the beam through a rigid rod. Formulation of the equation of

motion is obtained starting from transverse/axial coupling through axial strain. Solution is obtained by applying method

of multiple time scale directly to the nonlinear partial differential equations and the boundary conditions. The results of the

linear frequencies match well with those obtained in open literature. Subsequent nonlinear study indicates that there is a

pronounced effect of spring and its mass. The influence of rigid rod location on frequencies is also investigated on

nonlinear frequencies of rotating beam.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic characteristics of rotating beam play a significant role in the overall performance and the design of
various engineering systems, such as, turbo-machinery, wind turbines, robotic manipulators and rotorcraft
blades. The determination of mode shape and natural frequencies of such rotating structures have been a topic
of primary importance and as such received considerable attention from various researchers working in the
related fields. Helicopter rotor blades are long, slender beams undergoing moderate deformation. During
operation these blades experience large bending and centrifugal loads. There has been a continued effort to
develop a mechanically simple yet efficient rotor blade and hub configuration. With the advancement in
technology, the design and construction of these helicopter rotors has become very simple with the
introduction of specialized elastomer with high loss factor [1,2], thus replacing the external hydraulic damper
in the blade. Huber [3] presented a comprehensive review of the development of modern helicopter rotors in
which elastomer plays an important role. The mechanical arrangement of the elastomeric damper leads to
additional nonlinear constraint during the deformation of the blade. Consequently, the dynamic analysis of
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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advanced helicopter rotors (known as bearingless rotor) becomes complicated due to multiple load paths and
highly nonlinear characteristics of the elastomeric damper [4]. A study conducted by Hebert [5] utilized a set of
distributed, tuned vibration absorbers to introduce lag damping in the rotor system. It has been inferred that
this technique can be implemented on both articulated as well as bearingless rotors. Recently, A new model [6],
based on Anelastic Displacement Fields, has been developed for the Elastomeric materials used in bearingless
rotor to capture the frequency and amplitude-dependent behavior often exhibited by these materials.

Beam theories for moderate deformation have been developed by several researchers [7–10]. Following their
approaches, one arrives at nonlinear analytical models which are ultimately used to obtain the equilibrium
positions and subsequent linearized solutions.

Independent of the above studies related to helicopter blades, several researchers have made significant
contribution to the study of nonlinear dynamics of beams using perturbation techniques. Anderson [11]
formulated the nonlinear equation of motion of a rotating bar and obtained the natural frequencies from the
linearized equation. Using a harmonic balance technique, the nonlinear structural dynamic analysis of blade
model was performed by Minguet and Dugundji [12]. Nayfeh and his associates reported several studies to
determine nonlinear response of stationary beams under large deflection. Nayfeh et al. [13] proposed a
numerical perturbation method for the determination of nonlinear response of a continuous beam having
complicated boundary conditions. The nonlinear response of a simple supported beam with an attached
spring–mass system was also investigated by Pakdemirli and Nayfeh [14]. Nayfeh and Nayfeh [15] obtained
the nonlinear modes and frequencies of a simply supported Euler–Bernoulli beam resting on an elastic
foundation having quadratic and cubic nonlinearity. Recently, nonlinear normal mode shapes were
determined for a cantilever beam by using the method of multiple time scale [16]. Pohit et al. [17–19] has
modeled the characteristic of an elastomeric material and investigated the effect of nonlinear elastomeric
constraint on rotating blade. They have applied a numerical perturbation technique to determine the
frequency–amplitude relationship of a rotating beam under transverse vibration. Recently Pesheck et al. [20]
proposed a method for determining reduced order models for rotating uniform cantilever Euler–Bernoulli
beams.

Most of the studies on helicopter blades have focused primarily on the linearised dynamic analysis. Very
little information is available on the influence of the elastomer on the structural dynamic characteristics of a
rotor blade when the elastomer is included as a subsystem. Dowell [21] used the component mode analysis to
examine the effect of material nonlinearity in the form of a nonlinear spring–mass system attached to a simply
supported beam. Subsequently, Nayfeh and Nayfeh [15] and Pohit et al. [17], made attempts to study the effect
of a nonlinear constraint on a simply supported and rotating beam respectively.

In a recent paper [22], formulation of equation of motion of a rotating beam with nonlinear constraint has
been presented starting from transverse/axial coupling through axial strain. The nonlinear constraint with its
mass appears in the boundary condition, thus making it possible to study the influence of spring–mass on the
dynamic characteristic of the system.

The major objectives of the present paper are as follows:
(i)
 Formulation of equation of motion of a rotating beam with nonlinear constraint starting from transverse/
axial coupling through axial strain. However, following the concept of bearingless rotor, the nonlinear
constraint is connected to the beam between two points on the beam through a rigid rod.
(ii)
 Determination of nonlinear solution by applying methods of multiple time scale directly to the partial
differential equations and the boundary conditions.
(iii)
 Study the influence of the location of the nonlinear constraint and its mass on nonlinear frequencies.
2. Formulation

The dynamics of rotating beam differs from that of non-rotating one due to the addition of centrifugal
stiffness. The differential equations of motion for a rotating beam have variable co-efficient while those for a
non-rotating beam have constant co-efficient. Additionally, in the present problem, there is a transverse
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constraint at the point B (Fig. 1) in the form of a nonlinear spring of mass M. The other end of the spring is
attached to a rigid massless link EC, which is also rotating along with the beam AC. One end of the link being
free and the other end is attached to the beam at C. Thus, Fig. 1 represents a simplified model of an otherwise
very complicated bearingless rotor blade, in which elastomer occupies the position between points F and B.
Since damping does not play any significant role as far as the natural frequencies are concerned, the elastomer
connection is represented only by a spring element. It is to be noted that the deformation of the spring–mass
system depends not only on the deflection of the beam at point B, but also on the deflection and slope at the
point C. The motion is restricted to the transverse direction only, thereby eliminating lead lag and torsional
motion, and allows axial strain. The effect of rotary inertia is also neglected.

Introducing ð Þ0 � space derivative with respect to x and ð � Þ � time derivative:

The expressions for the kinetic energy and the potential energy of the rotating beam are given in Eqs. (1)
and (2), respectively.
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where extension of the spring D is given by

D ¼ w2ðL2; tÞ � ðL2 � L1Þ
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Fig. 1. Rotating beam with spring–mass system.
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Here t denotes time, m denotes mass per unit length of beam, EI the flexural rigidity of the beam cross-
section, O the angular velocity, A is the cross-sectional area of the beam, wiði ¼ 1; 2; 3Þ the transverse deflection
at the three segments of the beam AD, uiði ¼ 1; 2; 3Þ are the left, central and right axial beam displacements, a
and g are the coefficients of the linear and nonlinear terms of the spring, respectively, M is the mass of the
nonlinear spring and L is the length of the beam. The Eqs. (1) and (2) are now introduced into variational
principle

d
Z t2

t1

ðT �UÞdt ¼ 0. (3)

Thus, one can obtain the governing equations and boundary conditions as follows:
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(8)

The first four equations of (7) represent the end boundary conditions in the transverse mode of vibration of
the rotating beam. The equations fifth to 12th of Eq. (7) describe the balance of shear forces, slopes and
deflections in the transverse direction at x ¼ L1 and L2, respectively. The 13th equation and the last equation
of Eq. (8) indicate that axial deflections at x ¼ L1 and L are zero.
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In the above derivation, the following assumptions are made
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dðw01Þ ¼ 0 at x ¼ 0 and w1ð0; tÞ ¼ 0.
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where r is the radius of gyration of the cross-section of the beam having length equal to L.
Governing equations and boundary conditions can be written as
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It is to be noted that stars (*) are removed from all the quantities for convenience.
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In the above equations, co-efficients a1, a2, a3, D1 and €D1 are defined as follows:
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Neglecting small order terms fOð�2Þg, the governing equations may be written as
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Integrating Eqs. (13a), (14a) and (15a), one gets
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At x ¼ 0, one obtains from Eq. (17a),
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Eliminating u01 and u02 from Eqs. (13)–(15), and with the help of Eq. (18), one gets the governing equations in
transverse mode as
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The corresponding boundary conditions are given as
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w003ð1; tÞ ¼ 0; w0003 ð1; tÞ ¼ 0. (20)
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2.1. Solution methodology

For the subsequent solution of the above nonlinear equations, one may uses the method of multiple scale
and seeks expansions of the solution for frequency-amplitude in the form

w1ðx; t; �Þ ¼ �w11ðx;T0;T2Þ þ �
3w13ðx;T0;T2Þ þ �

5w15ðx;T0;T2Þ þ � � � ,

w2ðx; t; �Þ ¼ �w21ðx;T0;T2Þ þ �
3w23ðx;T0;T2Þ þ �

5w25ðx;T0;T2Þ þ � � � ,

w3ðx; t; �Þ ¼ �w31ðx;T0;T2Þ þ �
3w32ðx;T0;T2Þ þ �

5w35ðx;T0;T2Þ þ � � � , ð21Þ

where, w1n, w2x and w3n are O(1); e is a small dimensionless parameter (defined earlier); T0 ¼ t is a first time
scale characterizing changes occurring at on, where on are the natural frequencies of the beam–spring system;
and T2 ¼ �2t is a slow time scale, characterizing the modulation of the amplitudes and phases due to
nonlinearity [23].

Substituting Eq. (21) in Eqs. (19) and (20), one obtains different order equations of e.
Order e:
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w0011ðZ1; tÞ ¼ w0021ðZ1; tÞ; w21ðZ2; tÞ ¼ w31ðZ2; tÞ,

w021ðZ2; tÞ ¼ w031ðZ2; tÞ,

w00011 � w00021 � ða3Z1Þw
0
11 þ a1D11 þ a3D2

0D11 ¼ 0 at x ¼ Z1,

w0031 � w0021 þ ðZ2 � Z1Þa1D11 þ ðZ2 � Z1Þa3D
2
0D11 ¼ 0 at x ¼ Z2,

w00021 � w00031 � a1D11 � a3D2
0D11 ¼ 0 at x ¼ Z2, (23)

where, D11 ¼ w21ðZ2Þ � ðZ2 � Z1Þw
0
21ðZ2Þ � w11ðZ1Þ and D2

0D11 ¼ D2
0w21ðZ2Þ � ðZ2 � Z1Þw

0
21ðZ2Þ �D2

0w11ðZ1Þ.
Order e3:

D2
0w13 þ aw000013 þ xw013 �

1

2
ð1� x2Þw0013 � ðaa3Z1Þw

00
13 ¼ �2D0D2w11, (24a)

D2
0w23 þ aw000023 þ xw023 �

1
2
ð1� x2Þw0023 ¼ �2D0D2w21, (24b)

D2
0w33 þ aw000033 þ xw033 �

1
2
ð1� x2Þw0033 ¼ �2D0D2w31, (24c)

w13ð0; tÞ ¼ 0; w013ð0; tÞ ¼ 0; w0033ð1; tÞ ¼ 0; w00033ð1; tÞ ¼ 0,

w13ðZ1; tÞ ¼ w23ðZ1; tÞ; w013ðZ1; tÞ ¼ w023ðZ1; tÞ,

w0013ðZ1; tÞ ¼ w0023ðZ1; tÞ; w23ðZ2; tÞ ¼ w33ðZ2; tÞ,

w023ðZ2; tÞ ¼ w033ðZ2; tÞ,

w00013ðZ1; tÞ � w00023ðZ1; tÞ � a3Z1w
0
13ðZ1; tÞ þ a1D13ðZ1; tÞ þ a2D3

11ðZ1; tÞ

þ a3D2
0D13ðZ1; tÞ þ 2a3D2D0D11ðZ1; tÞ ¼ 0,
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w0033ðZ2; tÞ � w0023ðZ2; tÞ þ ðZ2 � Z1Þa1D13ðZ2; tÞ þ ðZ2 � Z1Þa2D
3
11ðZ2; tÞ

þ ðZ2 � Z1Þa3fD
2
0D13ðZ2; tÞ þ 2D2D0D11ðZ2; tÞg ¼ 0,

w00023ðZ2; tÞ � w00033ðZ2; tÞ � a1D13ðZ2; tÞ � a2D3
11ðZ2; tÞ

� a3fD2
0D13ðZ2; tÞ þ 2D2D0D11ðZ2; tÞg ¼ 0, ð25Þ

where, D0 � q=qT0 and D2 � q=qT2.
2.2. Linear solution

At order e, the equations and boundary conditions are linear and hence the solution is assumed of the form

w11 ¼ fAðT2Þe
ioT0 þ c:c:gy1ðxÞ,

w21 ¼ fAðT2Þe
ioT0 þ c:c:gy2ðxÞ,

w31 ¼ fAðT2Þe
ioT0 þ c:c:gy3ðxÞ, ð26Þ

where c.c. is the complex conjugate of the preceding terms and yi(x) are the displacement components only.
Introducing Eq. (26) in Eqs. (24) and (25) one gets

ay00001 �
1

2
ð1� x2Þy001 � ðaa3Z1Þy

00
1 þ xy01 � o2y1 ¼ 0; 0pxpZ1,

ay00002 �
1

2
ð1� x2Þy002 þ xy02 � o2y2 ¼ 0; Z1pxpZ2,

ay00003 �
1

2
ð1� x2Þy003 þ xy03 � o2y3 ¼ 0; Z2pxp1, ð27Þ

y1ð0Þ ¼ 0; y01ð0Þ ¼ 0; y002ð1Þ ¼ 0; y0002 ð1Þ ¼ 0; y1ðZ1Þ ¼ y2ðZ1Þ,

y01ðZ1Þ ¼ y02ðZ1Þ; y001ðZ1Þ ¼ y002ðZ1Þ; y2ðZ2Þ ¼ y3ðZ2Þ; y02ðZ2Þ ¼ y03ðZ2Þ,

y0001 ðZ1Þ � y0002 ðZ1Þ � ða3Z1Þy
0
1ðZ1Þ � a1y2ðZ2Þ � a1ðZ2 � Z1Þy

0
2ðZ2Þ

� a1w1ðZ1Þ � a3o2y2ðZ2Þ þ a3ðZ2 � Z1Þo
2y02ðZ2Þ þ a3o2y1ðZ1Þ ¼ 0,

y003ðZ2Þ � y002ðZ2Þ þ a1ðZ2 � Z1Þy2ðZ2Þ � a1ðZ2 � Z1Þ
2y02ðZ2Þ � a1ðZ2 � Z1Þy1ðZ1Þ

� a3ðZ2 � Z1Þo
2y2ðZ2Þ þ a3ðZ2 � Z1Þ

2o2y02ðZ2Þ þ a3ðZ2 � Z1Þo
2y1ðZ1Þ ¼ 0,

y002ðZ2Þ � y003ðZ2Þ � a1y2ðZ2Þ þ a1ðZ2 � Z1Þy
0
2ðZ2Þ þ a1y1ðZ1Þ þ a3o2y2ðZ2Þ

� a3ðZ2 � Z1Þo
2y02ðZ2Þ � a3o2y1ðZ1Þ ¼ 0. ð28Þ

The power series solutions of the Eqs. (27) and (28) can be expressed as

y1ðxÞ ¼
X1
k¼1

Akxk�1; 0pxpZ1,

y2ðxÞ ¼
X1
k¼1

Bkxk�1; Z1pxpZ2,

y3ðxÞ ¼
X1
k¼1

Ckxk�1; Z2pxp1. ð29Þ
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Substituting Eq. (29) in Eqs. (27) and (28), one obtains the following recurrence relationship and the
boundary conditions.

1:Akþ4 �
ð0:5þ aa3Z1Þ

aðk þ 2Þðk þ 3Þ
Akþ2 þ

0:5½kðk � 1Þ � 2o2�

a:kðk þ 1Þðk þ 2Þðk þ 3Þ
Ak ¼ 0,

1:Bkþ4 �
0:5

aðk þ 2Þðk þ 3Þ
Bkþ2 þ

0:5½kðk � 1Þ � 2o2�

a:kðk þ 1Þðk þ 2Þðk þ 3Þ
Bk ¼ 0,

1:Ckþ4 �
0:5

aðk þ 2Þðk þ 3Þ
Ckþ2 þ

0:5½kðk � 1Þ � 2o2�

a:kðk þ 1Þðk þ 2Þðk þ 3Þ
Ck ¼ 0, ð30Þ

A1 ¼ 0; A2 ¼ 0;

X1
k¼1

Ckðk � 1Þðk � 2Þ ¼ 0,

X1
k¼1

Ckðk � 1Þðk � 2Þðk � 3Þ ¼ 0,

X1
k¼1

AkZk�1
1 �

X1
k¼1

BkZk�1
1 ¼ 0,

X1
k¼1

Akðk � 1ÞZk�2
1 �

X1
k¼1

Bkðk � 1ÞZk�2
1 ¼ 0,

X1
k¼1

Akðk � 1Þðk � 2ÞZk�3
1 �

X1
k¼1

Bkðk � 1Þðk � 2ÞZk�3
1 ¼ 0,

X1
k¼1

Akðk � 1Þðk � 2Þðk � 3ÞZk�4
1 �

X1
k¼1

Bkðk � 1Þðk � 2Þðk � 3ÞZk�4
1

� ða1 � o2a3Þ
X1
k¼1

AkZk�1
1 � ðaa3Þ

X1
k¼1

Akðk � 1ÞZk�2
1

þ ða1 � a3o2Þ
X1
k¼1

Bkðk � 1ÞZk�2
2 � ðZ2 � Z1Þða1 � o2a3Þ

X1
k¼1

Bkðk � 1ÞZk�2
2 ¼ 0,

X1
k¼1

BkZk�1
2 �

X1
k¼1

CkZk�1
2 ¼ 0,

X1
k¼1

Bkðk � 1ÞZk�2
2 �

X1
k¼1

Ckðk � 1ÞZk�2
2 ¼ 0,

X1
k¼1

Bkðk � 1Þðk � 2ÞZk�3
2 �

X1
k¼1

Ckðk � 1Þðk � 2ÞZk�3
2 þ ðZ2 � Z1Þ

2
ða1 � o2a3Þ

X1
k¼1

Bkðk � 1ÞZk�2
2 þ ðZ2 � Z1Þða1 � o2a3Þ

X1
k¼1

AkZk�1
1 � ðZ2 � Z1Þða1 � o2a3Þ

X1
k¼1

BkZk�1
2 ¼ 0,
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X1
k¼1

Bkðk � 1Þðk � 2Þðk � 3ÞZk�4
2 �

X1
k¼1

Ckðk � 1Þðk � 2Þðk � 3ÞZk�4
2

þ ðZ2 � Z1Þða1 � o2a3Þ
X1
k¼1

Bkðk � 1ÞZk�2
2 þ ða1 � o2a3Þ

X1
k¼1

AkZk�1
1 � ða1 � o2a3Þ

X1
k¼1

BkZk�1
2 ¼ 0. ð31Þ

If the power series is truncated at the Pth term, then there are altogether 3P unknown coefficients. From the
recurrence relations (30) and the boundary conditions (31) one obtains 3P simultaneous linear homogeneous
equations. For a non-trivial solution, the determinant of the coefficient matrix must vanish. Thus, setting this
diterminant equal to zero, one gets the frequency equation which is solved numerically for unknown linear
frequency o.

2.3. Nonlinear solution

Since the homogeneous part of Eqs. (24) has a non-trivial solution, the inhomogeneous Eqs. (24) have a
solution only if a solvability condition is satisfied [21]. In order to find this condition, their solution is
expressed in the form:

w13ðx; tÞ ¼ ½AðT2Þe
ioT0 þ c:c�F1ðxÞ þ W̄ 1ðx;T0;T2Þ,

w23ðx; tÞ ¼ ½AðT2Þe
ioT0 þ c:c�F2ðxÞ þ W̄ 2ðx;T0;T2Þ,

w33ðx; tÞ ¼ ½AðT2Þe
ioT0 þ c:c�F3ðxÞ þ W̄ 3ðx;T0;T2Þ. ð32Þ

Substituting Eqs. (32) in Eqs. (17) and (18) and collecting the co-efficient of eioT0 and equating to zero (i.e.
removing the secular term), one can obtain

aF00001 þ xF01 �
1

2
ð1� x2ÞF001 � o2F1 � ðaa3Z1ÞF

0
1

� �
¼ �2ðioÞ

A0

A

� �
y1ðxÞ,

aF00002 þ xF02 �
1

2
ð1� x2ÞF002 � o2F2

� �
¼ �2ðioÞ

A0

A

� �
y2ðxÞ,

aF00003 þ xF03 �
1

2
ð1� x2ÞF003 � o2F3

� �
¼ �2ðioÞ

A0

A

� �
y3ðxÞ, ð33Þ

F1ð0Þ ¼ 0; F01ð0Þ ¼ 0; F003ð1Þ ¼ 0; F0003 ð1Þ ¼ 0,

F1ðZ1Þ ¼ F2ðZ1Þ; F01ðZ1Þ ¼ F02ðZ1Þ; F001ðZ1Þ ¼ F002ðZ1Þ

F2ðZ2Þ ¼ F3ðZ2Þ; F02ðZ2Þ ¼ F03ðZ2Þ,

F0003 ðZ1Þ � F0002 ðZ1Þ � ða3Z1ÞF
0
1ðZ1Þ þ a1d13 þ a2

3s2

4

� �
d311 � a3o2d13 þ a3

A0

A

� �
ð2ioÞd11 ¼ 0,

F003ðZ2Þ � F002ðZ2Þ þ ðZ2 � Z1Þ a1d13 þ a2
3s2

4

� �
d311

�
�a3o2d13 þ a3

A0

A

� �
ð2ioÞd11

�
¼ 0,

F0003 ðZ2Þ � F0002 ðZ2Þ � a1d13 þ a2
3s2

4

� �
d311

�
�a3o2d13 þ a3

A0

A

� �
ð2ioÞd11

�
¼ 0, (34)

where

A0 �
qA

qT2
; AðT2Þ ¼

1

2
sðT2Þe

iyðT2Þ and AĀ ¼
1

4
s2.

Defining

d11 ¼ y2ðZ2Þ � ðZ2 � Z1Þy
0
2ðZ2Þ � y1ðZ1Þ,
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d13 ¼ F2ðZ2Þ � ðZ2 � Z1ÞF
0
2ðZ2Þ � F1ðZ1Þ,

D3
11 ¼ ½w21ðZ2; tÞ � ðZ2 � Z1Þw

0
21ðZ2; tÞ � w11ðZ1; tÞ�

3

¼ ½Ad11eioT0 þ c:c:�3 þ � � �

¼ ½3A2Ād311e
ioT0 þ c:c:� þ � � � ,

D3
13 ¼ ½w23ðZ2; tÞ � ðZ2 � Z1Þw

0
23ðZ2; tÞ � w13ðZ1; tÞ�

¼ ½Ad13eioT0 þ c:c:� þ � � � ,

D0D13 ¼ � o2Ad13eioT0 þ c:c:,

D2D0D11 ¼ A0ðioÞd11eioT0 þ c:c.

and using the relationship

�2ðioÞ
q

qT2
ðln AÞ ¼

�2io
sðT2Þ

qs
qT2

� �
þ 2o

qy
qT2

into Eqs. (33) and (34) and equating real and imaginary parts one gets,

aF00001 þ xF01 �
1

2
ð1� x2ÞF001 � o2F1 � ðaa3Z1ÞF

00
1

� �
¼ 2o

qy
qT2

y1ðxÞ, (35a)

aF00002 þ xF02 �
1

2
ð1� x2ÞF002 � o2F2

� �
¼ 2o

qy
qT2

y2ðxÞ, (35b)

aF00003 þ xF03 �
1

2
ð1� x2ÞF003 � o2F3

� �
¼ 2o

qy
qT2

y3ðxÞ (35c)

and qs=qT2 ¼ 0.
Boundary conditions are

F1ð0Þ ¼ 0; F01ð0Þ ¼ 0; F003ð1Þ ¼ 0; F0003 ð1Þ ¼ 0; F1ðZ1Þ ¼ F2ðZ1Þ,

F01ðZ1Þ ¼ F01ðZ1Þ; F001ðZ1Þ ¼ F002ðZ1Þ; F2ðZ2Þ ¼ F3ðZ2Þ,

F02ðZ2Þ ¼ F03ðZ2ÞF
000
1 ðZ1Þ � F0002 ðZ1Þ � ða3Z1ÞF

0
1ðZ1Þ þ a1d13

þ a2
3s2

4

� �
d311 � a3o2d13 � 2oa3d11

qy
qT2
¼ 0,

F003ðZ2Þ � F002ðZ2Þ þ ðZ2 � Z1Þ a1d13 þ a2
3s2

4

� �
d311 � a3o2d13 þ 2oa3d11

qy
qT2

� �
¼ 0,

F003ðZ2Þ � F0002 ðZ2Þ � a1d13 þ a2
3s2

4

� �
d311 � a3o2d13 � 2oa3d11

qy
qT2

� �
¼ 0. ð36Þ
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Multiplying Eq. (35a) by y1, Eq. (35b) by y2, and Eq. (35c) by y3 and integrating over
R Z1
0 dx,

R Z2
Z1

dx andR 1
Z2
dx, respectively, and subsequently adding, one obtainsZ Z1

0

aF00001 þ xF01 �
1

2
ð1� x2ÞF001 � o2F1 � ðaa3Z1ÞF

00
1

� �
y1 dx

þ

Z Z2

Z1

aF00002 þ xF02 �
1

2
ð1� x2ÞF002 � o2F2

� �
y2 dx

þ

Z 1

Z1

aF00003 þ xF03 �
1

2
ð1� x2ÞF003 � o2F3

� �
y3 dx

¼ 2oy0
Z Z1

0

y2
1 dxþ

Z Z2

Z1

y2
2 dxþ

Z Z1

Z2

y2
3 dx

 !
. ð37Þ

After some algebraic manipulation left-hand side of Eq. (37) becomes

3
4
aa2s2d

4
11 � 2oaa3y

0d211.

The detail of the algebraic manipulation is given in Appendix A.
Therefore, one may write

3

4
aa2s2d

4
11 � 2oaa3y

0d211 ¼ 2oy0
Z Z1

0

y2
1 dxþ

Z Z2

Z1

y2
2 dxþ

Z 1

Z2

y2
3 dx

 !
. (38)

Let us assume

b1 ¼

Z Z1

0

y2
1 dxþ

Z Z2

Z1

y2
2 dxþ

Z 1

Z2

y2
3 dx.

Then Eq. (38) becomes

y0 ¼
3aa2
8o

s2
� �

d411
1

b1 þ aa3d
2
11

. (39)

On integration, one obtains

y ¼
3aa2
8o

s2
� �

d411
T2

b1 þ aa3d
2
11

.

Considering, T2 ¼ �2t, s ¼ Â=� and a4 ¼ aa3, the above equation becomes

y ¼
3aa2
8o

� �
d411

1

b1 þ a4d
2
11

Â
2
t. (40)

Thus, from Eq. (40), one can obtain the frequency–amplitude relationship as

onl ¼ oþ
3aa2
8o

� �
d411

1

b1 þ a4d
2
11

Â
2
. (41)
3. Results and discussion

The numerical results obtained by using the methods outlined in the previous section are presented below in
two parts. The data used are given in Table 1.
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Table 2

The first three linear natural frequencies of the rotating beam without spring (a1 ¼ 0:0) with comparison of the other references

First mode Second mode Third mode

Present study 1.1244 3.4073 7.6170

Pohit et al. [17] 1.1245 3.4073 7.6218

Friedmann et al. [24] 1.1250 — —

Gupta et al. [25] 1.1247 3.4089 7.6376

Table 3

The first three linear natural frequencies of the rotating beam with massless linear spring (M ¼ 0) for various locations (Z2) of the torque
tube; Z1 ¼ 0.1

Z2 First mode Second mode Third mode

0.15 1.12465 3.40768 7.61706

0.20 1.12658 3.40845 7.62710

0.25 1.12972 3.40732 7.71556

Table 1

Data for the beam to obtain the numerical results

m ¼ 9.7 kg/m, L ¼ 6.6m, a ¼ 0.0106, O ¼ 32.8 rad/s, a1 ¼ 1000

Table 4

The first three linear natural frequencies of the rotating beam with spring with mass system for various locations (Z2) of the torque tube

with a4 ¼ 0.15

Z2 First mode Second mode Third mode

0.15 1.12494 3.40874 7.61962

0.20 1.12685 3.40943 7.62175

0.25 1.12998 3.40844 7.64637
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3.1. Linear analysis

The natural frequencies of the rotating beam are obtained by using the power series method. First the
analysis is carried out without spring. The roots of the frequency equations (Eqs. (27) and (28)) are obtained
by the power series method following an iterative search procedure. The results are presented in Table 2. It is
observed that these results so obtained are in excellent agreement, with those presented in Refs. [17,24,25]. In
the present problem, the order of the determinant is taken as 300� 300 to guarentee the convergence for the
numerical calculation (convergence occured in the order of 240� 240). For calculating the value of the natural
frequency (o), we have taken the tolerance limit for error as 10�7.

Next the first three natural frequencies of the rotating beam with spring attached at different locations
(Z2 ¼ 0.15, 0.20 and 0.25) are determined. In this case, the mass of the spring is neglected. The value of
dimensionless spring constant a1 is assumed to be 1000. The same analysis is also carried out taking the mass
of the spring into account. It is to be noted that in order to compare the mass of the spring with respect to that
of the beam, a new non-dimensional number a4 ð¼ aa3 ¼M=mLÞ has been introduced in Eq. (40). The results
are presented in Tables 3 and 4 corresponding to a4 ¼ 0:0 (massless spring) and a4 ¼ 0:15 (mass of the spring
is 15% to that of mass of the beam) respectively. It is observed that due to the presence of the mass, the first
natural frequencies for different spring locations (Z2 ¼ 0:15, 0.20 and 0.25) have increased whereas those of the
higher modes have diminished. It is evident that influence of mass of the spring on natural frequency is not
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very pronounced when the spring is located near the root (up to Z2 ¼ 0:15). However, when the spring is
located at Z2 ¼ 0:20 or above, the mass of the spring should not be neglected while determining the linear
frequencies as these values deviate from that of massless spring. Comparison of Tables 3 and 4 reveals that
with the inclusion of spring mass, the magnitude of third natural frequency decreases while the first two
frequencies exhibit reverse trend.

3.2. Nonlinear analysis

It has been observed that, elastomeric material exhibits nonlinear characteristics so far as the amplitude of
motion is concerned. As the amplitude increases, degree of nonlinearity becomes more predominant. In this
section, the aspect of nonlinear frequency with respect to amplitude of motion is addressed.
Table 5

The values of b1 and y2(Z2) for the first three modes and for various locations of the torque tube on the beam with massless spring system

Z2 First mode Second mode Third mode

0.15 b1 0.52186e�004 0.156716e�005 0.16385e�007

y2 Z2

 �

8.54820e�004 �4.97205e�004 �1.08344e�004

0.20 b1 0.45096e�004 0.149762e�005 0.19248e�007

y2 Z2

 �

�0.00130 7.57158e�004 1.63049e�004

0.25 b1 0.37072e�004 0.15993e�005 0.33031e�007

y2 Z2

 �

0.00172 0.00105 2.45745e�004

Table 6

The values of b1 and y2(Z2) for the first three modes and for various locations of the torque tube on the beam with spring mass system

(a4 ¼ 0:15)

Z2 First mode Second mode Third mode

0.15 b1 0.50197e�004 0.15138e�005 0.15794e�007

y2 Z2

 �

�8.36419e�004 4.87704e�004 1.06267e�004

0.20 b1 0.43622e�004 0.14552e�005 0.16323e�007

y2 Z2

 �

�0.00127 7.44880e�004 1.51596e�004

0.25 b1 0.36045e�004 0.15355e�005 0.19655e�007

y2 Z2

 �

0.00169 �0.00103 1.9631e�004

Fig. 2. Variation of first nonlinear frequency with amplitude of oscillation (massless spring a4 ¼ 0:0, Z2 ¼ 0:25).
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Fig. 4. Variation of third nonlinear frequency with amplitude of oscillation (massless spring a4 ¼ 0:0, Z2 ¼ 0:25).

Fig. 3. Variation of second nonlinear frequency with amplitude of oscillation (massless spring a4 ¼ 0:0, Z2 ¼ 0:25).

Fig. 5. Variation of first nonlinear frequency with amplitude of oscillation for different locations of the torque tube with massless spring

(a4 ¼ 0:0).
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The nonlinear frequency–amplitude relationship of the rotating beam with spring–mass system is given in
Eq. (41). Calculations are performed with a value of nonlinear spring constant (a2) as 10

9. It may be noted that
nonlinear spring constant of the elastomeric material actually used in helicopter rotor blade exhibits even
higher value, Pohit et al. [17].

In order to obtain the nonlinear frequencies of the blade–spring–mass system, the value of b1 and y2(Z2) are
calculated for the first three modes of vibrations. They are presented in Table 5. In this Table, the mass of the
spring is neglected, i.e. a4 ¼ 0:0. The corresponding values of b1 and y2(Z2) with spring–mass system
(a4 ¼ 0:15) are furnished in Table 6.

Having obtained the necessary numerical data (Tables 5 and 6), the nonlinear natural frequencies are
obtained. The location of the torque tube is at Z2 ¼ 0:25 and that of the spring is at Z1 ¼ 0:1. Figs. 2–4 show
Fig. 6. Variation of second nonlinear frequency with amplitude of oscillation for different locations of the torque tube with massless

spring (a4 ¼ 0:0). —— Z2 ¼ 0:15; . . . . . . Z2 ¼ 0:20; — Z2 ¼ 0:25.

Fig. 7. Variation of third nonlinear frequency with amplitude of oscillation for different locations of the torque tube with massless spring

(a4 ¼ 0:0). —— Z2 ¼ 0:15; . . . . . . Z2 ¼ 0:20; — Z2 ¼ 0:25.
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the variation of first three natural frequencies of the rotating beam with the tip amplitudes when mass of
spring is neglected.

The dynamic characteristics of the rotating beam are analyzed for different torque tube locations. In
Figs. 5–7, variations of nonlinear frequencies are plotted with the tip amplitude for different torque tube
locations (Z2 ¼ 0:15, 0.20 and 0.25) when spring location remains constant. It is observed that location of the
torque tube has pronounced effect on frequencies and degree of nonlinearity increases with the increase in the
value of Z2. Similar results are obtained considering the mass of the spring (a4 ¼ 0:15). Figs. 8–10 exhibit the
variation of the first three natural frequencies with tip amplitudes when torque tube is located at 0.25
(Z2 ¼ 0.25).

Figs. 11–13 show the variation of the first three nonlinear frequencies with tip amplitudes for different
values of torque tube locations (Z2 ¼ 0:15, 0.20 and 0.25). However, the natures of the curves are found to
follow the same pattern as those of Figs. 5–7.
Fig. 8. Variation of first nonlinear frequency with amplitude of oscillation (spring with mass a4 ¼ 0:15, Z2 ¼ 0:25).

Fig. 9. Variation of second nonlinear frequency with amplitude of oscillation (spring with mass a4 ¼ 0:15, Z2 ¼ 0:25).
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Fig. 10. Variation of third nonlinear frequency with amplitude of oscillation (spring with mass a4 ¼ 0:15, Z2 ¼ 0:25).

Fig. 11. Variation of first nonlinear frequency with amplitude of oscillation for different locations of the torque tube with spring mass

(a4 ¼ 0:15). —— Z2 ¼ 0:15; . . . . . . Z2 ¼ 0:20; — Z2 ¼ 0:25.
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A study has been also carried out to highlight the influence of spring mass on nonlinear frequency. The
location of the torque tube is kept at Z2 ¼ 0:25. Variations of nonlinear frequencies with tip amplitudes are
plotted with nonlinear spring with mass (a4 ¼ 0:15) and without mass (a4 ¼ 0:0). The results of the first three
modes of vibration are shown in Figs. 14–16. In all modes of vibration, as the amplitude of vibration increases,
the effect of spring mass becomes more prominent. For the higher modes of vibration, the natures of the
curves are very appreciably indicating the fact that it is not wise to neglect the mass of the spring in order to
simplify the problem. It has been observed that the position of the backbone curve for the third mode has been
shifted (Fig. 16) when compared to the first two frequencies.

It is interesting to know the effect of design changes on nonlinear frequencies of the rotating blade. In the
present problem, the spring is attached with a rigid massless link, which is also rotating along with the beam
AC. One end of the link is free and the other end being attached to the beam at a point towards the free end. In
Ref. [22], the authors made a similar study in which the one end of a nonlinear spring is attached to the
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Fig. 12. Variation of second nonlinear frequency with amplitude of oscillation for different locations of the torque tube with spring mass

(a4 ¼ 0:15). —— Z2 ¼ 0:15; . . . . . . Z2 ¼ 0:20; — Z2 ¼ 0:25.

Fig. 13. Variation of third nonlinear frequency with amplitude of oscillation for different locations of the torque tube with spring mass

(a4 ¼ 0:15). —— Z2 ¼ 0:15; . . . . . . Z2 ¼ 0:20; — Z2 ¼ 0:25.
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rotating beam and the other end is attached to a rigid link that is also rotating with the beam. The first
nonlinear frequencies for the present case (Z2 ¼ 0:20 and 0.25; Z1 ¼ 0:1) are superimposed on the frequency
plot of Ref. [22] and are shown in Fig. 17. In Ref. [22], the location of the spring is taken as Z ¼ 0:20 and 0.25.
It has been observed from the figure that not only the linear frequencies differ from one another but also the
nature of the frequency plots vary. With the present configuration of the rigid link, degree of nonlinearity is
decreased for both the locations of the torque tube.

4. Concluding remarks

Linear and nonlinear free vibration of a rotating beam under flap bending has been investigated. The beam
is rotating with a transverse constraint in form of a nonlinear spring having finite mass. Formulation of the
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Fig. 14. Influence of first nonlinear frequency with Z2 ¼ 0:25. —— a4 ¼ 0:0; —— a4 ¼ 0:15.

Fig. 15. Influence of second nonlinear frequency with Z2 ¼ 0:25. —— a4 ¼ 0:0; —— a4 ¼ 0:15.
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equation of motion of the rotating beam along with the nonlinear constraint have been presented in the paper
starting from transverse/axial coupling through axial strain.

For linear problem, first natural frequencies are obtained for rotating beam without spring mass
attachment. The results found are excellent agreement with the published results of other researchers. The first
six linear frequencies are also calculated for a few location of the spring–mass system. It is revealed that the
effect of spring mass is quite prominent on certain spring location, and it is not advisable to neglect spring
mass while calculating natural frequencies of the system. The method of multiple time scale is directly applied
to the partial differential equations and boundary conditions to determine the nonlinear frequencies of the
system.

A closed form frequency–amplitude relationship of the rotating beam along with spring–mass system is
obtained. The effect of the mass of the spring on nonlinear frequencies is also investigated. It may be
concluded that mass of the spring plays a significant role in predicting frequency–amplitude relationship.
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Fig. 17. Comparison of the frequency–amplitude relationships of the first mode of vibration under different design conditions. Present

study: �—� �— � Z2 ¼ 0:20; —— Z2 ¼ 0:25; ——Z1 ¼ 0:10. Ref. [22]: – – – Z ¼ 0:20; —�— Z ¼ 0:25.

Fig. 16. Influence of third nonlinear frequency with Z2 ¼ 0:25. —— a4 ¼ 0:0; —— a4 ¼ 0:15.
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Further study is conducted to highlight the influence of the location of the spring–mass system on the rotating
frequencies of the beam and it is noted that location of the spring exhibits significant effect on nonlinear
frequencies.

An investigation is also carried out to assess the effect of design changes on nonlinear frequencies of the
rotating blade. It is noted that with the present configuration of spring and torque tube, degree of nonlinearity
is reduced.
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Appendix A

Left-hand side of Eq. (37)
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Z2
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After using boundary conditions on y(x) and F(x) from Eqs. (28) and (36), with some algebraic
manipulation one gets the following:

a
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0

F00001 y1 dxþ a
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using Eqs. (A.1)–(A.3), left-hand side of Eq. (37) reduces to
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þ

Z 1

Z2

ay
0000
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0d211 ðsimplified form obtained after using Eq: ð27ÞÞ.
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